miércoles, 22 de abril de 2009

Historia de la Matemática

Historia de la Matemática
Puedes estudiar la historia de dos formas, bien cronológicamente, o a través de sus distintas ramas.

Cronológicamente, esta historia podría dividirse en cuatro grandes bloques según la periodicidad establecida por A.N. Kolmogorov:
a) Nacimiento de las matemáticas: Este periodo se prolonga hasta los siglos VI-V a.C. cuando las matemáticas se conviertesn en una ciencia independiente con objeto y metodología propios. También podría denominarse matemáticas antiguas o prehelénicas y en ella se suelen englobar las matemáticas de las antiguas civilizaciones de Egipto, Mesopotamia, China e India. Grecia estaría situada a caballo entre este periodo y el siguiente.
b) Periodo de las matemáticas elementales: A continuación del anterior, se prolonga desde los siglos VI-V a.C. hasta finales del siglo XVI. Durante este periodo se obtuvieron grandes logros en el estudio de las matemáticas constantes, comenzando a desarrollarse la geometría analítica y el análisis infinitesimal.
c) Periodo de formación de las matemáticas de magnitudes variables: El comienzo de es periodo está representado por la introducción de las magnitudes variables en la geometría analítica de Descartes y la creación del cálculo diferencial e integral en los trabajos de I. Newton y G.V. Leibniz. En el transcurso de este periodo se formaron casi todas las disciplinas conocidas actualmente, así como los fundamentos clásicos de las matemáticas contemporáneas. Este periodo se extendería aproximadamente hasta mediados del siglo XIX.
d) Periodo de las matemáticas contemporáneas: En proceso de creación desde mediados del siglo XIX. En este periodo el volumen de las formas espaciales y relaciones cuantitativas abarcadas por los métodos de las matemáticas han aumentado espectacularmente, e incluso podríamos decir exponencialmente desde la llegada del ordenador.
Teniendo en cuenta sus ramas, podemos dividirla en:
ÁLGEBRA Y ARITMÉTICA

En la antigüedad, el Álgebra fue una parte inseparable de la Aritmética, más tarde se separó de ella. Ésta es la razón por la que en gran parte de la literatura científica a la hora de estudiar ambas ramas se hace de una manera conjunta.

La aritmética será la ciencia que se ocupa de los objetos concretos, esto es, de los números. En cambio el Álgebra es, en esencia, la doctrina de las operaciones matemáticas analizadas desde un punto de vista abstracto y genérico, independientemente de los números o objetos concretos.

El concepto de número surgió como consecuencia de la necesidad práctica de contar objetos. Inicialmente se contaban con ayuda de los medios disponibles: dedos, piedras... (basta recordar por ejemplo, que la palabra cálculo deriva de la palabra latina calculus que significa contar con piedras). La serie de números naturales era, obviamente, limitada, pero la conciencia sobre la necesidad de ampliar el conjunto de números representa ya una importante etapa en el camino hacia la matemática moderna.

Paralelamente a la ampliación de los números se desarrolló su simbología y los sistemas de numeración, diferentes para cada civilización.

Los egipcios desarrollaron el llamado "sistema de numeración jeroglífico", que consistía en denominar cada uno de los "números clave" (1, 10, 100, 1000...) por un símbolo (palos, lazos, figuras humanas en distintas posiciones...). Los demás números se formaban añadiendo a un número u otro del número central uno o varios de estos números clave. Un sistema de numeración posterior a éste, pero de similares características sería el sistema de numeración romano.

También crearon fracciones, pero sólo como divisores de la unidad, esto es, de la forma 1/n; el resto de fracciones se expresaban siempre como combinaciones de estas fracciones.
Aparecen también durante la expansión de esta civilización los primeros métodos de operaciones matemáticas, todos ellos con carácter aditivo, para números enteros y fracciones.

Algebraicamente se resuelven determinadas ecuaciones de la forma x+ax=b donde la incógnita x se denominaba "montón".

En la civilización mesopotámica utilizaron el sistema de numeración posicional sexagesimal, carente de cero y en el que un mismo símbolo podía representar indistintamente varios números que se diferenciaban por el enunciado del problema. Desarrollaron un eficaz sistema de notación fraccionario, que permitió establecer aproximaciones decimales verdaderamente sorprendentes. Esta evolución y simplificación del método fraccionario permitió el desarrollo de nuevos algoritmos que se atribuyeron a matemáticos de épocas posteriores, baste como ejemplo el algoritmo de Newton para la aproximación de raíces cuadradas.

Desarrollaron el concepto de número inverso, lo que simplificó notablemente la operación de la división.

Encontramos también en esta época los primeros sistemas de dos ecuaciones con dos incógnitas; pero sin duda la gran aportación algebraica babilónica se centra en el campo de la potenciación y en la resolución de ecuaciones cuadráticas, tanto es así que llegaron a la solución para ecuaciones de la forma y también mediante el cambio de variable t=ax. Efectuaron un sin fin de tabulaciones que utilizaron para facilitar el cálculo, por ejemplo de algunas ecuaciones cúbicas. El dominio en esta materia era tal, que incluso desarrollaron algorítmos para el cálculo de sumas de progresiones, tanto aritméticas como geométricas.

Su capacidad de abstracción fue tal que desarrollaron muchas de las que hoy se conocen como ecuaciones Diofánticas, algunas de las cuales están íntimamente unidas con conceptos geométricos.

En la Antigua Civilización China el sistema de numeración es el decimal jeroglífico. Las reglas de las operaciones son las habituales, aunque destaca como singularidad, que en la división de fracciones se exige la previa reducción de éstas a común denominador. Dieron por sentado la existencia de números negativos, aunque nunca los aceptaron como solución a una ecuación.

La contribución algebraica más importante es, sin duda, el perfeccionamiento alcanzado en la regla de resolución de sistemas de ecuaciones lineales. Para todos los sistemas se establece un método genérico de resolución muy similar al que hoy conocemos como método de Gauss, expresando incluso los coeficientes en forma matricial, tranformándolos en ceros de manera escalonada.

Inventaron el "tablero de cálculo", artilugio consistente en una colección de palillos de bambú de dos colores (un color para expresar los números positivos y otro para los negativos) y que podría ser considerado como una especie de ábaco primitivo.

Esta orientación algorítmica de las matemáticas en la China Antigua, se mantiene hasta mediados del siglo XIV debido fundamentalmente a las condiciones socio-económicas de esta sociedad. Con el desarrollo del "método del elemento celeste" se culminó el desarrollo del álgebra en China en la edad media. Este método, desarrollado por Chou Shi Hié, permitía encontrar raíces no sólo enteras, sino también racionales, e incluso aproximaciones decimales para ecuaciones de la forma . El método del elemento celeste es equivalente al que en Occidente denominamos "método de Horner", matemático que vivió medio siglo más tarde.

Otro gran logro de la época medieval fue la suma de progresiones desarrollado por Chon Huo (s. XI) y Yang Hui (s.XIII). Unido a estas sumas de progresiones se establecieron elementos sólidos en la rama de la combinatoria, construyendo el llamado "espejo precioso" de manera similar a lo que hoy conocemos como triángulo de Tartaglia o Pascal.

Los primeros indicios matemáticos de la civilización india se calculan hacia los siglos VIII-VII a.C. y parece evidente que desde tiempos remotos utilizaron un sistema de numeración posicional y decimal.

Fue, sin embargo, entre los siglos V-XII d.C. cuando la contribución a la evolución de las matemáticas se hizo especialmente interesante, destacando cuatro nombres propios: Aryabhata (s.VI), Brahmagupta (s.VI), Mahavira (s. IX) y Bhaskara Akaria (s.XII).

La característica principal del desarrollo matemático en esta cultura, es el predominio de las reglas aritméticas de cálculo, destacando la correcta utilización de los números negativos y la introducción del cero, llegando incluso a aceptar como números validos los números irracionales. Profundizaron en la obtención de reglas de resolución de ecuaciones lineales y cuadráticas, en las cuales las raíces negativas eran interpretadas como deudas. Desarrollaron también, sin duda para resolver problemas astronómicos, métodos de resolución de ecuaciones diofánticas, llegando incluso a plantear y resolver (s.XII) la ecuación , denominada ecuación de Pelt.

Matemáticamente se considera indiscutible la procedencia hindú del sistema de numeración decimal y las reglas de cálculo.

El helenismo nunca logró la unidad, ni en su época de máximo apogeo ni cuando fue amenazado con la destrucción. Ahora bien, en menos de cuatro siglos, de Tales de Mileto a Euclides de Alejandría, y lo hayan querido o no los pensadores griegos, rivales de ciudades o de escuelas, construyeron un imperio invisible y único cuya grandeza perdura hasta nuestros días. Este logro insólito se llama MATEMÁTICAS.

En los matemáticos de la época helénica los problemas prácticos relacionados con las necesidades de cálculos aritméticos, mediciones y construcciones geométricas continuaron jugando un gran papel. Sin embargo, lo novedoso era, que estos problemas poco a poco se desprendieron en una rama independiente de las matemáticas que obtuvo la denominación de "logística". A la logística fueron atribuidas: las operaciones con números enteros, la extracción numérica de raíces, el cálculo con la ayuda de dispositivos auxiliares, cálculo con fracciones, resolución numérica de problemas que conducen a ecuaciones de 1er y 2º grado, problemas prácticos de cálculo y constructivos de la arquitectura, geometría, agrimensura, etc...

Al mismo tiempo ya en la escuela de Pitágoras se advierte un proceso de recopilación de hechos matemáticos abstractos y la unión de ellos en sistemas teóricos. Así por ejemplo, de la aritmética fue separada en una rama independiente la teoría de números, es decir, el conjunto de conocimientos matemáticos que se relacionan con las propiedades generales de las operaciones con números naturales. En esta época ya resultaban conocidos los métodos de sumación de progresiones aritméticas simples. Se estudiaban cuestiones sobre la divisibilidad de los números; fueron introducidas las proporciones aritméticas, geométricas y armónicas y diferentes medias: la aritmética, la geométrica y la armónica. Fue encontrado el método de hallazgo de la serie ilimitada de las ternas de números "pitagóricos", esto es, ternas de números que satisfacen la ecuación a2+b2=c2.

Se descubrió de manera tajante la irracionalidad, demostrando, por ejemplo, la irracionalidad de la raíz cuadrada de 2 por la vía de reducción al absurdo. Este descubrimiento de la irracionalidad condujo inevitablemente a la elaboración de la teoría de la divisibilidad.

La etapa siguiente se caracteriza por la necesidad de crear una teoría matemática general tanto para los números racionales como para los irracionales. Paralelamente, al ampliarse el número de magnitudes medibles, debido a los números irracionales, se originó una reformulación de la geometría, dando lugar al álgebra geométrica. Esta nueva rama incluía entre otros conceptos el método de anexión de áreas, el conjunto de proposiciones geométricas que interpretaban las cantidades algebraicas, división áurea, expresión de la arista de un poliedro regular a través del diámetro de la circunferencia circunscrita. Sin embargo, el álgebra geométrica estaba limitada a objetos de dimensión no mayor que dos, siendo inaccesibles los problemas que conducían a ecuaciones de tercer grado o superiores, es decir, se hacían imposibles los problemas que no admitieran solución mediante regla y compás. La historia sobre la resolución de los tres problemas geométricos clásicos (sobre la cuadratura del círculo, la trisección de un ángulo, la duplicación del cubo) está llena de anécdotas, pero lo cierto es que como consecuencia de ellos surgieron, por ejemplo, las secciones cónicas, cálculo aproximado del número pi, el método de exhaución como predecesor del cálculo de límites o la introducción de curvas trascendentes.
Asimismo, el surgimiento de la irracionalidad condicionó la necesidad de creación de una teoría general de las relaciones, teoría cuyo fundamento inicial lo constituyó el algoritmo de Euclides.
En la época del dominio romano destaca la evolución en problemas de cálculo, siendo necesario señalar la "Métrica" de Herón de Alejandría, formulada en forma de recetario de reglas: regla de extracción de raíces cuadradas y cúbicas; cálculo de áreas y volúmenes; y en especial la conocida fórmula de Herón para calcular el área del triángulo conocidos los tres lados. Igualmente son destacables los métodos de Diofanto que encontró soluciones a más de 50 clases diferentes de ecuaciones, generalmente de segundo grado, denominadas ecuaciones diofánticas.

Resumiremos afirmando que las matemáticas de la Antigua Grecia, representan uno de los primeros ejemplos del establecimiento de las matemáticas como ciencia, desarrollándose en su seno, dentro de ciertos límites, los elementos de las ciencias matemáticas ulteriores: álgebra, análisis infinitesimal, geometría analítica, mecánica teórica y el método axiomático.

Durante el primer siglo del Imperio Musulmán no se produjo ningún desarrollo científico, ya que los árabes, no habían conseguido el impulso intelectual necesario, mientras que el interés por el saber en el resto del mundo, había desaparecido casi completamente. Fue a partir de la segunda mitad del siglo VIII, cuando comenzó el desenfrenado proceso de traducir al árabe todas las obras griegas conocidas.

Se fundaron escuelas por todo el Imperio, entre las que destaca Bait Al-Hikma (Casa de la Sabiduría). Entre los miembros de esta escuela destaca un nombre propio Mohammed ibn-Musa Al-Khowarizmi que escribió más de media docena de obras matemáticas y astronómicas, dos de las cuales han tenido especial importancia en la historia. La primera de ellas está basada en una traducción árabe de Brahmagupta y en la que se da una reproducción exacta del sistema de numeración hindú, lo que ha originado la creencia popular de que nuestro sistema de numeración procede del árabe. El "nuevo" sistema de numeración vino a ser conocido como "el de Al-Khowarizmi" y a través de deformaciones lingüísticas derivó en "algorismi" y después en algoritmo, término que, actualmente, posee un significado mucho más amplio. Igualmente, a través del titulo de su obra más importante, el Hisab al-jabr wa-al-muqabala, nos ha transmitido otro nombre mucho más popular, la palabra "álgebra". En esta obra se estudian seis tipos de ecuaciones cuadráticas, así como un sin fin de elementos griegos.

Con posterioridad a Al-Khuwarizmi se desarrollaron infinidad de procedimientos de cálculo y algoritmos especiales, entre ellos:

obtención del número pi con 17 cifras exactas mediante polígonos inscritos y circunscritos en la circinferencia realizada por Kashi (s. XV). Después de más de 150 años, en 1593, en Europa, Viète encontró sólo nueve cifras exactas. Hubo que esperar a fines del siglo XVI y comienzos del XVII para repetir el cálculo de Kashi.

Cálculo de raíces por el método conocido actualmente como de Ruffini-Horner, posiblemente como resultado de la estrecha colaboración con los matemñaticos chinos. Además fue advertida y expresada la serie del desarrollo binomial y fue también enunciada la tabla de coeficientes binomiales.

Extracción aproximada de raíces, utilizando la interpolación lineal.
Sumación de progresiones aritméticas y geométricas.
Asimismo, en virtud de la frecuente aplicación en los cálculos de las irracionalidades, el límite entre los números racionales y los irracionales comenzó a difuminarse, ampliándose la concepción de número real positivo. La idea de una concepción única del número real obtuvo pues, en el oriente Medio cierto perfeccionamiento.
Los trabajos algebraicos árabes entre los siglos IX-XV además de la resolución de ecuaciones de primer y segundo grado, incluían también las ecuaciones cúbicas. A estas últimas conducían diferentes tipos de problemas como la división de la esfera por un plano, la trisección del ángulo, la búsqueda del lado de un polígono regular de 9 lados...
Otra dirección en la resolución de ecuaciones cúbicas, se basaba en la obtención de la imagen geométrica de la raíz positiva, por medio de la intersección de secciones cónicas, convenientemente elegidas. Sin embargo el gran defecto del álgebra de esta época era la ausencia de una simbología, lo que contuvo el desarrollo del álgebra.

En el continente europeo, las matemáticas no tienen un origen tan antiguo como en muchos países del Lejano y Medio Oriente, alcanzando sólo éxitos notorios en la época del medievo desarrollado y especialmente en el Renacimiento.
El punto de arranque de las matemáticas en Europa fue la creación de los centros de enseñanza. Con anterioridad, tan solo algunos monjes se dedicaron a estudiar las obras de ciencias naturales y matemáticas de los antiguos. Uno de los primeros centros de enseñanza fue organizado en Reims (Francia) por Gerberto (Silvestre II) (940-1003). Fue posiblemente el primero en Europa que enseñó el uso de los numerales indo-arábigos. Sin embargo hubo que esperar a que los musulmanes rompieran la barrera lingüística, hacia el siglo XII, para que surgiera una oleada de traducciones que pusieran en marcha la maquinaria matemática. El trabajo de los traductores fue sensacional. Así Gerardo de Cremona (1114-1187) tradujo del árabe más de 80 obras.
Durante el siglo XIII surgió la figura de Leonardo de Pisa (1180-1250) más conocido como Fibonacci. Alrededor del año 1202 escribió su célebre obra "Liber Abaci" (el libro del ábaco), en el que se encuentran expuestos: el cálculo de números según el sistema de numeración posicional; operaciones con fracciones comunes, aplicaciones y cálculos comerciales como la regla de tres simple y compuesta, la división proporcional, problemas sobre la determinación de calidad de las monedas; problemas de progresiones y ecuaciones; raíces cuadradas y cúbicas... Fibonacci quedó inmortalizado por la famosa "sucesión de Fibonacci" y el famoso problema de los conejos.
El profesor parisino Nicole Oresmes (1328-1382) generalizó el concepto de potencia, introduciendo los exponentes fraccionarios, las reglas de realización de las operaciones con ellos y una simbología especial, anticipándose de hecho a la idea de logaritmo.
Ya en el siglo XV, Regiomontano enriqueció el concepto de número, introduciendo los radicales y las operaciones con ellos, ampliando así las posibilidades de resolución de ecuaciones. Nicolo Tartaglia (1500-1557), Fiore y Scipión del Ferro (1456-1474) desarrollaron fórmulas para la búsqueda de ecuaciones de tercer grado. Pero fue Jerónimo Cardano (1501-1576) quien introdujo un método regular de resolución de ecuaciones de tercer y cuarto grado en su obra "Ars Magna". En esta obra se expresan diversos teoremas que relacionan raíces y coeficientes, así como la divisibilidad de un polinomio por factores (x-x1), donde x1 es raíz del polinomio. Asimismo en esta obra se establece un notable cambio desde el álgebra literal al álgebra simbólica.
Fue François Viète (1540-1603) quien dio un sistema único de símbolos algebraicos consecuentemente organizado, gracias al cual resultó por primera vez posible, la expresión de ecuaciones y sus propiedades mediante fórmulas generales. Viète estableció en todo momento, una fuerte conexión entre los trabajos trigonométricos y algebraicos, de forma que de igual manera que se le considera el creador del álgebra lineal, se le podría considerar como uno de los padres del enfoque analítico de la trigonometría, esto es, la goniometría.
En 1614 fue publicada por John Neper (1550-1617) la obra "Canonis mirifici logarithmorum descriptio" y en ella las primeras tablas de logaritmos de funciones trigonométricas. Años más tarde, en estrecha colaboración con Henry Briggs (1561-1630) desarrollaron el sistema logarítmico decimal. La teoría de las funciones logarítmicas fue seguidamente desarrollada, alcanzando su culminación en los trabajos de Leonard Euler. Junto a estos avances científico-matemáticos comenzaron a desarrollarse las primeras máquinas de cálculo.
Ya en pleno siglo XVII, la última parte de la famosa obra de Descartes(1596-1650) "Discurso del Método" denominada "Géometrie", detalla en su comienzo, instrucciones geométricas para resolver ecuaciones cuadráticas, centrándose seguidamente en la aplicación del álgebra a ciertos problemas geométricos. Analiza también curvas de distintos órdenes, para terminar en el tercer y último libro que compone la obra, con la construcción de la teoría general de ecuaciones, llegando a la conclusión de que el número de raíces de una ecuación es igual al grado de la misma, aunque no pudo demostrarlo. Prácticamente la totalidad de la Géometrie está dedicada a la interrelación entre el álgebra y la geometría.
El desarrollo posterior de la geometría analítica, mostró que las ideas de Descartes sobre la unificación del álgebra y geometría no pudo realizarse sino que siguieron un camino separado aunque relacionado, de hecho durante la segunda mitad de siglo el álgebra siguió rompiendo su hermandad con la geometría, fortaleciéndose el aparato simbólico literal, alcanzando gran desarrollo la teoría de ecuaciones.
La teoría de números se enriqueció con las famosas investigaciones de Fermat. En particular a él pertenece el conocido "Gran teorema de Fermat". En el año 1665 B. Pascal formuló el principio de inducción matemática.
Ya en el siglo XVIII los métodos del cálculo aritmético se enriquecieron con la aparición de los logaritmos.
La independencia de álgebra y geometría (en contra de las ideas de Descartes) continuó determinándose ya a comienzos de siglo, cuando en 1707 vio la luz la "Aritmética Universal" de Newton. En ella el álgebra se exponía en estrecha relación con el desarrollo de los métodos de cálculo, relegando las cuestiones geométricas al dominio de las aplicaciones. La esencia de la obra consiste en reducir cualquier problema a la formación de una ecuación algebraica, cuya raíz es la solución del problema. Culmina el libro con los resultados de la teoría general de ecuaciones y además la resolución gráfica de éstas, mediante la construcción geométrica de las raíces. Este famoso tratado contiene las fórmulas, para las sumas de las potencias de las raíces de una ecuación algebraica, fórmulas conocidas habitualmente como "identidades de Newton". Aparece también un teorema que permite determinar el número de raíces reales de un polinomio, así como una regla para determinar una cota superior de las raíces positivas.
Después de la Aritmética Universal de Newton, surgieron una serie de monografías, especialmente centradas en los procedimientos de resolución numérica de ecuaciones, elaboradas por Halley, Lagrange, Fourier y Maclaurin entre otros.
En 1768 apareció la "Aritmética Universal" de Euler, dictada por éste cuando ya estaba ciego. En ella se analizan un sin fin de resultados: se generalizan las reglas de resolución de problemas aritméticos; se desarrolla el aparato simbólico-literal del álgebra; se aclaran las operaciones con números, monomios, radicales y complejos; se introducen los logaritmos; se dan las reglas de extracción de las raíces de números y de expresiones algebraicas polinomiales; se introducen las serie como medio de expresión de las funciones racionales fraccionarias y binomiales con exponentes fraccionarios y negativos de una potencia; se introducen los números poligonales, las proporciones y progresiones, las fracciones decimales periódicas y se estudian los métodos de resolución de ecuaciones algebraicas.
Así, en esencia, el álgebra se convirtió en la ciencia sobre las ecuaciones algebraicas. En ella se incluía además, la elaboración del aparato simbólico-literal necesario para la resolución de tales ecuaciones.
También se profundizó en el concepto de número, produciéndose de una manera definitiva la admisión de los números irracionales. Igualmente se profundizó en las reglas de operaciones con números imaginarios y complejos, pero siempre bajo la premisa de la obtención de raíces de ecuaciones.
Fue también Euler quien se ocupó de una manera definitiva de lo que hoy en día conocemos como teoría de números. Comenzó estudiando los teoremas de Fermat, para desarrollar a continuación todos los aspectos de esta teoría, preferentemente utilizando métodos aritméticos y algebraicos, rehuyendo en la medida de lo posible del análisis infinitesimal. A él debemos la actual teoría de congruencias, a la que llegó tras extensos trabajos sobre la divisibilidad y tras introducir el concepto de raíz primitiva según el módulo m.
No de menor importancia que la teoría de congruencias fueron sus trabajos sobre problemas de análisis diofántico, para cuyas necesidades elaboró y fundamentó la teoría de las fracciones continuas. Asimismo elaboró los métodos analíticos para la resolución de problema de la distribución de números primos, en la serie de los números naturales y también para una serie de problemas aditivos. El primero de estos problemas fue tratado también por Legendre y Chebyshev. Para el segundo de los problemas, donde se estudia el desarrollo de los números grandes en sumandos menores, cabe destacar junto a Euler los nombres de Waring y Lagrange.
La teoría de números en el siglo XVIII, se convirtió pues, en una rama independiente, sintetizada en los trabajos de Euler, Lagrange, Legendre y Lambert entre otros, definiéndose prácticamente los principales problemas y direcciones.
El siglo XIX merece ser llamado más que ningún otro periodo anterior la edad de Oro de la Matemática.
Las particularidades del nuevo periodo se manifiestan ya nada más comenzar el siglo. En álgebra hay que tener en cuenta los trabajos de Abel y Galois sobre la resolución de ecuaciones algebraicas en radicales. Ellos promovieron a un primer lugar en el álgebra una serie de conceptos generales muy abstractos, entre los cuales merece el primer lugar el concepto de grupo, dando lugar al nacimiento del Álgebra moderna.
El álgebra moderna es un campo extraordinariamente amplio y ramificado en el que se recogen un gran número de disciplinas científicas e independientes cuyo objeto común son las operaciones algebraicas, las cuales representan abstracciones lejanas de las operaciones del álgebra elemental. Estudiemos de una manera más detallada estas disciplinas.
Teoría General de las Ecuaciones algebraicas:Este fue el problema fundamental del álgebra durante el siglo XIX, entendiéndose como la búsqueda de las raíces de la ecuación con ayuda de operaciones racionales y la operación de la extracción de la raíz.
En este época se introdujeron una serie de conceptos, entre ellos el concepto de grupo, que yacen en la base del álgebra moderna. Tengamos en cuenta los trabajos de K.F. Gauss, N.H. Abel y E. Galois, relativos a la demostración de la no resolubilidad en radicales de las ecuaciones de grado mayor que cinco y la creación de la teoría de Galois.
Karl Friedrich Gauss hizo sus primeros descubrimientos en álgebra siendo muy joven, advirtiendo ya en 1796 la relación entre la búsqueda de raíces de la ecuación xn-1=0 y la división de la circunferencia en partes iguales. Tres años más tarde demostraba el teorema fundamental del álgebra, dando en 1815, 1816 y 1849 tres nuevas demostraciones. Recordemos que la primera formulación de este teorema, sin demostrar, fue la dada por Descartes. para la demostración de este teorema necesitó construir los campos de desarrollo de los polinomios.
Otro de los notables descubrimientos algebraicos de comienzo de siglo es la demostración de la irresolubilidad en radicales de las ecuaciones de quinto grado. Por este camino llevó P. Ruffini sus investigaciones a finales del siglo XVIII, pero el primer éxito real lo obtuvo Niels Henrik Abel. Tras esto, Abel realizó investigaciones fundamentales en el campo de la teoría de funciones analíticas, e investigó una serie de funciones especiales como las elípticas e hiperbólicas. Pero Abel no pudo dar un criterio general de resolubilidad en radicales de las ecuaciones con coeficientes numéricos.
Sin embargo, la solución a este problema no se hizo esperar largamente y se debe a Evaristo Galois. El objeto fundamental de sus investigaciones fue el determinar cuando son resolubles mediante radicales las ecuaciones polinómicas. El aparato algebraico introducido tuvo, sin embargo, una significación que salía de los marcos del problema indicado. Su idea del estudio de la estructura de los campos algebraicos y la comparación con ellos de la estructura de los grupos de un número finito de sustituciones, fue la base fructífera del álgebra moderna. la teoría actual de Galois, se ha convertido en una disciplina matemática compleja y ramificada, que incluye un amplio material sobre las relaciones entre las propiedades de las ecuaciones, los números algebraicos y los grupos.
Teoría de Grupos.Galois y Ruffini introdujeron de forma independiente el concepto de grupo. En la primera mitad del siglo XIX, los resultados de la teoría de grupo jugaron un papel auxiliar, especialmente en la teoría de las ecuaciones algebraicas, formándose, predominantemente, la teoría de los grupos finitos.
Posteriormente, ya en los años 50, en trabajos de Cayley y otros, comenzaron a aparecer definiciones abstractas más generales de grupo. este proceso se aceleró desde el año 1870 con los trabajos de C. Jordan, quien hizo un resumen de los resultados de la teoría de grupos finitos en su aplicación a la teoría de números, teoría de funciones y geometría algebraica.
A finales de siglo, aparecieron las primeras aplicaciones de la teoría de grupo, resolviéndose, por ejemplo, el problema de la clasificación de todas las redes cristalinas espaciales gracias a los trabajos de E.S Fiedorov . Los grupos discretos finitos, a los que pertenecen los grupos de Fiedorov, obtuvieron extensión en la teoría de los espacios multidimensionales en relación con la teoría de los poliedros regulares en éstos.
Posteriormente se planteó la investigación de los grupos infinitos, tanto discretos como continuos y también sobre la creación de un aparato de cálculo adaptado a las necesidades de la teoría de grupo. los logros fundamentales sobre estas cuestiones pertenecen a los discípulos de C. Jordan, F. Klein y S. Lie.
En la confluencia de los siglos XIX y XX la teoría de grupos se ramificó desmesuradamente, formando el núcleo del álgebra actual. Ella se compone de una serie de teorías altamente desarrolladas: los grupos finitos, los grupos discretos infinitos, los grupos continuos, entre ellos los grupos de Lie. Los métodos teóricos de grupos penetraron en una serie de disciplinas matemáticas y sus aplicaciones. Los descubrimientos de De Broglie, Schrödinger, Dirac y otros, en la mecánica cuántica y en la teoría de la estructura de la materia mostraron que la física moderna debe apoyarse en la teoría de los grupos continuos, en particular en la teoría de la representación de grupos por operadores lineales, la teoría de los caracteres y otras elaboradas por Cartan, H. Weyl y otros científicos.
Pasó medio siglo desde los trabajos de Gauss, Abel y Galois y el centro de gravedad en las investigaciones algebraicas se trasladó a la teoría de grupos, subgrupos, anillos, estructuras. En al álgebra comenzó el periodo de las matemáticas modernas.
Álgebra Lineal:La historia del álgebra del siglo XIX quedaría incompleta si no atendiésemos a la formación del álgebra lineal, surgida de la teoría de los sistemas de ecuaciones lineales y relacionada con la teoría de determinantes y matrices. Durante la segunda mitad de siglo se realizaron investigaciones muy importantes de la teoría de los invariantes de las ecuaciones. En este camino del desarrollo, creció la teoría de las formas que encontró aplicación además de en el álgebra, en la teoría de números, la geometría diferencial, la geometría algebraica y la mecánica.
Teorías de Número Real y Teoría de Conjuntos:En el año 1872 surgieron una serie de trabajos, escritos por G. Cantor, R. Dedekind, K. Weierstrass, E. Heine y Ch. Meray cuyo único objetivo era el de dotar de una teoría rigurosa al número real, problema éste considerado vital para una correcta fundamentación del análisis.
Así Dedekind definió el número real como una cortadura en el conjunto de los números racionales, dando al conjunto de los números reales una interpretación geométrica en forma de línea recta.
Cantor, por su parte, identificó al número real con una sucesión convergente de números racionales.
La creación de la teoría de conjuntos infinitos y los números transfinitos pertenece también a G. Cantor. Él demostró la no equivalencia de los conjuntos de números racionales y reales. Durante los años 1879 a 1884 elaboró de forma sistemática la teoría de conjuntos, introduciendo el concepto de potencia de un conjunto, el concepto de punto límite, de conjunto derivado... La teoría general de las potencias de conjuntos, las transformaciones y operaciones sobre conjuntos y las propiedades de los conjuntos ordenados constituyeron fundamentalmente la teoría abstracta de conjuntos.
Las cuestiones de fundamentación de la teoría de conjuntos, junto con la investigación de los límites de su aplicación se convirtieron durante el siglo XX en una ciencia especial, la "lógica matemática", la cual forma una parte importante de los fundamentos de las matemáticas modernas.